A Distributed and Adaptive Signal Processing Approach to Reducing Energy Consumption in Sensor Networks

نویسندگان

  • Jim Chou
  • Dragan Petrovic
  • Kannan Ramchandran
چکیده

We propose a novel approach to reducing energy consumption in sensor networks using a distributed adaptive signal processing framework and efficient algorithm . While the topic of energy-aware routing to alleviate energy consumption in sensor networks has received attention recently [1,2], in this paper, we propose an orthogonal approach to previous methods. Specifically, we propose a distributed way of continuously exploiting existing correlations in sensor data based on adaptive signal processing and distributed source coding principles. Our approach enables sensor nodes to blindly compress their readings with respect to one another without the need for explicit and energy-expensive inter-sensor communication to effect this compression. Furthermore, the distributed algorithm used by each sensor node is extremely low in complexity and easy to implement (i.e., one modulo operation), while an adaptive filtering framework is used at the data gathering unit to continuously learn the relevant correlation structures in the sensor data. Our simulations show the power of our proposed algorithms, revealing their potential to effect significant energy savings (from 10%65%) for typical sensor data corresponding to a multitude of sensor modalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks

LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...

متن کامل

A distributed and adaptive signal processing approach to exploiting correlation in sensor networks

We propose a novel approach to reducing energy consumption in sensor networks using a distributed adaptive signal processing framework and efficient algorithm . While the topic of energy-aware routing to alleviate energy consumption in sensor networks has received attention recently [1,2], in this paper, we propose an orthogonal approach to complement previous methods. Specifically, we propose ...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

ENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS

 Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...

متن کامل

A New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption

Clustering is an effective approach for managing nodes in Wireless Sensor Network (WSN). A new method of clustering mechanism with using Binary Gravitational Search Algorithm (BGSA) in WSN, is proposed in this paper to improve the energy consumption of the sensor nodes. Reducing the energy consumption of sensors in WSNs is the objective of this paper that is through selecting the sub optimum se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003